
Using ColdFrame’s TextUML

Simon Wright simon@pushface.org

October 4, 2023

Abstract

A worked example of the use of a textual form of UML to prepare translatable
models.

Contents

1 Introduction 2

2 Worked Example: Simple Buttons 2

2.1 Enumerations . 4

2.2 Imported Types . 4

2.3 Signals . 5

2.4 Class Button . 6

2.4.1 Button attributes . 6

2.4.2 Button operations . 7

2.4.3 Button state machine . 10

2.5 Class LED . 13

2.5.1 LED attributes . 14

2.5.2 LED operations . 14

2.6 Associations . 15

3 TextUML tokens 15

4 Syntax 16

5 Files 24

6 Macros 24

7 Definitions 24

1

1 Introduction

ColdFrame is an open-source code generator backend for use with UML tools, targeted
at Ada.

Until recently (2019) the UML tool of choice has been ArgoUML; it is still being worked
on, but the released versions don’t work on newer macOS releases, and the development
version only runs from an awkward command line interface.

The TextUML project is a Java-based tool to encode UML models in textual form.
It goes beyond the aims of this project, in that it provides an action language. This
means that the whole application can be written in TextUML and executable code can
be generated from it.

ColdFrame doesn’t go as far as this: it generates a framework, which can call up user
code in the form of separate subprograms. Recently, it’s been made possible to include
some user code (in Ada) in the model.

This document has been generated using nuweb.py, with conversion to PDF via TeX
Live.

2 Worked Example: Simple Buttons

The syntax of ColdFrame’s version of TextUML is reproduced in Section 4.

A TextUML model can contain multiple domains. It acts only as a holder; its name
has no significance. This is a ‘file’ scrap (the introductory @o), as encoded in the source
web, which results in the other scraps in the document being ‘tangled’ into the file
indicated.

@o textuml.tuml @{

(*

This is a model comment, which appears before the element concerned

and will be included in the output.

*)

/* This is a textual comment, which will be ignored. */

model TextUML_Demonstration;

@< The domains @>

end.

@}

It gets ‘woven’ as

"textuml.tuml" 2≡
(*

This is a model comment, which appears before the element concerned

and will be included in the output.

*)

/* This is a textual comment, which will be ignored. */

model TextUML_Demonstration;

〈The domains 3 〉
end.

�

2

https://github.com/simonjwright/coldframe
https://www.adaic.org
https://github.com/argouml-tigris-org/argouml
https://github.com/abstratt/textuml
https://github.com/simonjwright/nuweb.py
https://www.tug.org/texlive/
https://www.tug.org/texlive/
https://simonjwright.github.io/coldframe/domains.html

If you were generating the TextUML file by hand, you’d write documentation as model
comments. Here, they’ve been expressed in the document instead, to improve readabi-
ity.

The Simple_Buttons domain (the only one in this model) is intended for demonstrating
ColdFrame’s use in Ravenscar systems.

Because sampler boards have very few buttons and user-accessible LEDs, the design is
very restricted. A Button can receive a short push (less than a quarter of a second) or
a long push; after a short push, it’s ‘set’ for 5 seconds; after a long push, it’s ‘set’ until
another push. A Button can be wired to control one or more LEDs; an LED can be
wired to be controlled by one or more Buttons.

In TextUML, a domain is a package with the annotation [domain] (“annotation” is
the TextUML word for stereotype). Other ways of decorating the model elements are
modifiers, which are (reserved) keywords in the syntax; for example, you could specify
that an attribute is identifying either by using the modifier id or the annotation [\id]

(the backslash is removed during processing, but allows you to use otherwise-reserved
identifiers).

A domain package can have nested packages, whose contents are incorporated directly
into the domain.

〈The domains 3 〉 ≡
[domain]

package Simple_Buttons;

〈SB.Enumerations 4a, ... 〉

〈SB.Imported types 4c, ... 〉

〈SB.Signals 5a, ... 〉

〈SB.Classes 6a, ... 〉

〈SB.Associations 15a 〉
end;

�

Fragment referenced in 2.
Users: Simple_Buttons never used.

Signals correspond to ColdFrame’s events.

A class typically is an abstraction of something in the domain of interest. It represents
the common properties and behaviour shared by all instances of the class.

An attribute holds a property of an object (either one per instance, for example the
Accession Number of a Book in a Library, or per class, for example the next Accession
Number to be used).

The purpose of operations is to implement the actual functionality of the domain.

An association is a relationship between two classes in the model (it is possible, though
uncommon, to have a reflexive association between a class and itself, e.g. Action is-a-
consequence-of Action).

3

https://simonjwright.github.io/coldframe/events.html
https://simonjwright.github.io/coldframe/classes.html
https://simonjwright.github.io/coldframe/attributes.html
https://simonjwright.github.io/coldframe/operations.html
https://simonjwright.github.io/coldframe/associations.html

2.1 Enumerations

This enumeration names the buttons. Only B1 will be used.

〈SB.Enumerations 4a 〉 ≡
enumeration Button_Name

B1,

B2

end;

�

Fragment defined by 4ab.
Fragment referenced in 3.
Users: Button_Name in 6b.

This enumeration names the LEDs. Only L1 will be used.

〈SB.Enumerations 4b 〉 ≡
enumeration LED_Name

L1,

L2

end;

�

Fragment defined by 4ab.
Fragment referenced in 3.
Users: LED_Name in 14ad.

2.2 Imported Types

This imported type is used by the supporting Digital IO domain to report input (switch)
state changes. The annotation [imported] includes a tagged value (tag imported, value
Digital_IO).

〈SB.Imported types 4c 〉 ≡
[imported (imported = Digital_IO)]

datatype Input_Signal_State;

�

Fragment defined by 4cd.
Fragment referenced in 3.
Users: Input_Signal_State in 9c.

This type is used by the supporting Digital IO domain to name outputs (LEDs).

〈SB.Imported types 4d 〉 ≡
[imported (imported = Digital_IO)]

datatype Output_Signal;

�

Fragment defined by 4cd.
Fragment referenced in 3.
Users: Output_Signal in 14d.

4

2.3 Signals

As noted above, signals correspond to ColdFrame’s events.

UML has them declared at package (domain) level, though ColdFrame’s implementation
actually declares the corresponding event types in the specification of the class where
they’re used (in this case, Button); hence the need, in general, to specify the target
class here (suppose there was more than one class in the domain that had to receive
events?). Note the namespace separator ::.

This event indicates that the button ‘pushed’ period (after a short push) has expired.

〈SB.Signals 5a 〉 ≡
signal Button::Lit_Timeout;

�

Fragment defined by 5abcd.
Fragment referenced in 3.
Users: Button::Lit_Timeout in 12b.
Uses: Button 6a.

This event indicates that the button has been pushed.

〈SB.Signals 5b 〉 ≡
signal Button::Push;

�

Fragment defined by 5abcd.
Fragment referenced in 3.
Users: Button::Push in 5c, 11b, 12ab, 13a.
Uses: Button 6a.

This event indicates that the button has been pushed long enough to make this a long
push.

〈SB.Signals 5c 〉 ≡
signal Button::Push_Timeout;

�

Fragment defined by 5abcd.
Fragment referenced in 3.
Users: Button::Push_Timeout in 12a.
Uses: Button 6a, Button::Push 5b.

This event indicates that the button has been released.

〈SB.Signals 5d 〉 ≡
signal Button::Release;

�

Fragment defined by 5abcd.
Fragment referenced in 3.
Users: Button::Release in 11b, 12a, 13a.
Uses: Button 6a.

5

2.4 Class Button

A Button controls a number of LEDs. When the Button is ‘set’, the LEDs related by
A1 are lit.

Buttons respond to both ‘short’ and ‘long’ pushes.

After a long push, the button remains set until it’s pushed again (long or short).

After a short push, the Button remains set for a period, which can be extended by a
further short push or a long push.

〈SB.Classes 6a 〉 ≡
class Button

〈SB.Button attributes 6b, ... 〉

〈SB.Button operations 7c, ... 〉

〈SB.Button state machine 10 〉
end;

�

Fragment defined by 6a, 13b.
Fragment referenced in 3.
Users: Button in 5abcd, 10, 11b, 12ab, 13a, 15a.

2.4.1 Button attributes

This identifying attribute (the id modifier) is the name of the Button.

〈SB.Button attributes 6b 〉 ≡
id attribute Name : Button_Name;

�

Fragment defined by 6bc, 7ab.
Fragment referenced in 6a.
Users: Name in 14d.
Uses: Button_Name 4a.

This attribute holds the time when the Button was pushed, so that the Lit timeout can
run from this initial time rather than (e.g.) when the Button was released.

〈SB.Button attributes 6c 〉 ≡
attribute Pushed_Time : Time;

�

Fragment defined by 6bc, 7ab.
Fragment referenced in 6a.
Users: Pushed_Time in 7d.

This ColdFrame timer controls how long the Button needs to remain pushed before
transition to the Held state.

6

〈SB.Button attributes 7a 〉 ≡
attribute Lit_Timer : Timer;

�

Fragment defined by 6bc, 7ab.
Fragment referenced in 6a.
Users: Lit_Timer in 9a.

This timer controls how long the Button needs to remain pushed before transition to
the Held state.

〈SB.Button attributes 7b 〉 ≡
attribute Pushed_Timer : Timer;

�

Fragment defined by 6bc, 7ab.
Fragment referenced in 6a.
Users: Pushed_Timer in 8ab.

2.4.2 Button operations

The state of the button has changed; tell the controlled LEDs to reevaluate their own
states (by checking whether any of the Buttons they are controlled by is set). Note the
modifier private.

〈SB.Button operations 7c 〉 ≡
private operation Changed();

�

Fragment defined by 7cd, 8abc, 9abc.
Fragment referenced in 6a.
Users: Changed in 11b, 12a.

This operation stores the time at which the Button was pushed: the Lit timeout runs
from this time, not the time of Button release.

This operation is short enough that we can include its code here, within the curly
braces.

〈SB.Button operations 7d 〉 ≡
private operation Note_Pushed_Time();

{

This.Pushed_Time := ColdFrame.Project.Calendar.Clock;

}

�

Fragment defined by 7cd, 8abc, 9abc.
Fragment referenced in 6a.
Users: Note_Pushed_Time in 12a.
Uses: Pushed_Time 6c.

This operation sets the Pushed timeout, again including the code in the model. The
indentation will be preserved (actually, relative to the first non-space character of the
first line)

7

〈SB.Button operations 8a 〉 ≡
private operation Set_Pushed_Timeout();

{

ColdFrame.Project.Events.Set

(The_Timer => This.Pushed_Timer,

On => Events.Dispatcher,

To_Fire => new Push_Timeout (This),

After => 0.25);

}

�

Fragment defined by 7cd, 8abc, 9abc.
Fragment referenced in 6a.
Users: Set_Pushed_Timeout in 12a.
Uses: Pushed_Timer 7b.

This operation clears the Pushed timeout.

〈SB.Button operations 8b 〉 ≡
private operation Clear_Pushed_Timeout();

{

ColdFrame.Project.Events.Unset

(The_Timer => This.Pushed_Timer,

On => Events.Dispatcher);

}

�

Fragment defined by 7cd, 8abc, 9abc.
Fragment referenced in 6a.
Users: Clear_Pushed_Timeout in 12b.
Uses: Pushed_Timer 7b.

This operation sets the Lit timeout. It’s called on button release after a short push,
but the time is relative to the time when the button was pushed.

〈SB.Button operations 8c 〉 ≡
private operation Set_Lit_Timeout();

�

Fragment defined by 7cd, 8abc, 9abc.
Fragment referenced in 6a.
Users: Set_Lit_Timeout in 12b.

This operation clears the Lit timeout.

8

〈SB.Button operations 9a 〉 ≡
private operation Clear_Lit_Timeout();

{

ColdFrame.Project.Events.Unset

(The_Timer => This.Lit_Timer,

On => Events.Dispatcher);

}

�

Fragment defined by 7cd, 8abc, 9abc.
Fragment referenced in 6a.
Users: Clear_Lit_Timeout in 12c.
Uses: Lit_Timer 7a.

This operation indicates whether the Button is set or not. It’s set if it’s in any of the
states Pushed, Held, Timed, Pushed_Again.

Note, the code is emitted in the body of the Ada subprogram, so if any local variables
are needed a declare block has to be used (in this particular case, a one-liner would
actually have been possible).

〈SB.Button operations 9b 〉 ≡
public operation Is_Set(): Boolean;

{

declare

Set_In_State : constant array (State_Machine_State_T) of Boolean

:= (Pushed | Held | Timed | Pushed_Again => True,

others => False);

begin

return Set_In_State (This.State_Machine_State);

end;

}

�

Fragment defined by 7cd, 8abc, 9abc.
Fragment referenced in 6a.
Users: Is_Set never used.
Uses: Held 13a, Pushed 12a, Pushed_Again 12c, Timed 12b.

This operation acts as receiver of state changes from Digital IO, via Input Signal State
Callback. The annotation [callback] triggers the necessary event generation. The
modifier static isn’t strictly necessary, since ColdFrame would automatically generate
a class operation anyway, but avoids a warning.

Calls the instance Changed so the Button can take the appropriate action.

〈SB.Button operations 9c 〉 ≡
[callback]

private static operation Receive_Change(S : Input_Signal_State);

�

Fragment defined by 7cd, 8abc, 9abc.
Fragment referenced in 6a.
Users: Receive_Change never used.
Uses: Input_Signal_State 4c.

9

Figure 1: Generated Button statechart

2.4.3 Button state machine

This is a Moore model state machine; all the actions take place on entry to a state. See
Figure 1 for the generated statechart.

ColdFrame also supports Mealy model state machines, where all the actions take place
on transitions, as well as mixed machines.

〈SB.Button state machine 10 〉 ≡
statemachine Button

〈SB.Button states 11a, ... 〉
end;

�

Fragment referenced in 6a.
Uses: Button 6a.

This is the inital state (indicated by the initial modifier). It performs a completion
transition to Off.

10

https://en.wikipedia.org/wiki/Moore_machine
https://en.wikipedia.org/wiki/Mealy_machine

〈SB.Button states 11a 〉 ≡
initial state Initial

transition to Off;

end;

�

Fragment defined by 11ab, 12abc, 13a.
Fragment referenced in 10.
Users: Initial never used.
Uses: Off 11b.

In the state Off, the button is off, waiting for a Push. If this state was entered as
a result of a Push in the Held state, there will be a corresponding Release, which is
ignored (the annotation [ignore]).

On entry, Changed is called to tell the connected LEDs that they need to reconsider
whether they should be lit.

〈SB.Button states 11b 〉 ≡
state Off

entry(Changed);

transition on signal(Button::Push) to Pushed;

[ignore] transition on signal(Button::Release) to Off;

end;

�

Fragment defined by 11ab, 12abc, 13a.
Fragment referenced in 10.
Users: Off in 11a, 12b, 13a.
Uses: Button 6a, Button::Push 5b, Button::Release 5d, Changed 7c, 14c, Pushed 12a.

In the state Pushed, the button is on, awaiting a Push Timeout, which transitions to
the Held state (a long push), or a Release (a short push), which transitions to the
Timed state.

The entry actions are

1. Note Pushed Time: note when the button was pushed, so that if it’s released
before the coming Push Timeout, this time can be used to determine how long
the button remains ‘pushed’.

2. Changed: tell the connected LEDs that they need to reconsider whether they
should be lit.

3. Set Pushed Timeout: if this timeout occurs, this was a long push.

11

〈SB.Button states 12a 〉 ≡
state Pushed

entry(Note_Pushed_Time; Changed; Set_Pushed_Timeout);

transition on signal(Button::Push_Timeout) to Held;

transition on signal(Button::Release) to Timed;

end;

�

Fragment defined by 11ab, 12abc, 13a.
Fragment referenced in 10.
Users: Pushed in 9b, 11b, 12c.
Uses: Button 6a, Button::Push 5b, Button::Push_Timeout 5c, Button::Release 5d, Changed 7c,

14c, Held 13a, Note_Pushed_Time 7d, Set_Pushed_Timeout 8a, Timed 12b.

In the state Timed, the button is on after a short push, awaiting a Lit Timeout (which
transitions to the Off state) or another Push (which transitions to Pushed Again).

The entry actions are

1. Clear Pushed Timeout: The Pushed Timeout that was started in the state Pushed
is cancelled, because it’s been overtaken by the short push that just occurred.

2. Set Lit Timeout: This determines how long the button remains ‘pushed’ for.

〈SB.Button states 12b 〉 ≡
state Timed

entry(Clear_Pushed_Timeout; Set_Lit_Timeout);

transition on signal(Button::Push) to Pushed_Again;

transition on signal(Button::Lit_Timeout) to Off;

end;

�

Fragment defined by 11ab, 12abc, 13a.
Fragment referenced in 10.
Users: Timed in 9b, 12a.
Uses: Button 6a, Button::Lit_Timeout 5a, Button::Push 5b, Clear_Pushed_Timeout 8b, Off 11b,

Pushed_Again 12c, Set_Lit_Timeout 8c.

In the state Pushed Again, the button has been pushed during the timeout after a short
push. Resets the timeout (in the entry action) and performs a completion transition to
Pushed to start another check (this Push can be the start of another short push or a
new long push).

〈SB.Button states 12c 〉 ≡
state Pushed_Again

entry(Clear_Lit_Timeout);

transition to Pushed;

end;

�

Fragment defined by 11ab, 12abc, 13a.
Fragment referenced in 10.
Users: Pushed_Again in 9b, 12b.
Uses: Clear_Lit_Timeout 9a, Pushed 12a.

12

In the state Held, the button is on, after a long push, awaiting another Push to transition
to the Off state. The button is still pushed, so there will be a corresponding Release,
which is ignored.

〈SB.Button states 13a 〉 ≡
state Held

transition on signal(Button::Push) to Off;

[ignore] transition on signal(Button::Release) to Held;

end;

�

Fragment defined by 11ab, 12abc, 13a.
Fragment referenced in 10.
Users: Held in 9b, 12a.
Uses: Button 6a, Button::Push 5b, Button::Release 5d, Off 11b.

Note that the state model could have been cast as a mixed Moore-Mealy machine, by
writing the state Timed as

@d SB.Button states @{

state Timed

entry(Clear_Pushed_Timeout; Set_Lit_Timeout);

transition on signal(Button::Push) to Pushed

do (Clear_Lit_Timeout);

transition on signal(Button::Lit_Timeout) to Off;

end;

@}

which implements the Clear_Lit_Timeout action as the (only) effect of the transition
signalled by the Button::Pushed event, and eliminates the need for the Pushed Again
state.

2.5 Class LED

An LED is lit when any of the Buttons it’s controlled by is set.

〈SB.Classes 13b 〉 ≡
class LED

〈SB.LED attributes 14a 〉

〈SB.LED operations 14b, ... 〉
end;

�

Fragment defined by 6a, 13b.
Fragment referenced in 3.
Users: LED in 14d, 15a.

13

2.5.1 LED attributes

This attribute identifies the LED.

〈SB.LED attributes 14a 〉 ≡
id attribute Name : LED_Name;

�

Fragment referenced in 13b.
Users: Name in 14d.
Uses: LED_Name 4b.

2.5.2 LED operations

This operation initialises the domain (this is indicated by the annotation [init]) by
creating Button(s) and LED(s) as required, and associating them according to the
required “circuit diagram”.

〈SB.LED operations 14b 〉 ≡
[init]

private static operation Initialize();

�

Fragment defined by 14bcd.
Fragment referenced in 13b.
Users: Intialize never used.

This operation is called from a controlling Button which has changed to evaluate
whether the LED should be lit (if any of the controlling Buttons is set) or not.

〈SB.LED operations 14c 〉 ≡
public operation Changed();

�

Fragment defined by 14bcd.
Fragment referenced in 13b.
Users: Changed in 11b, 12a.

This operation maps the LED to the corresponding Digital IO output pin.

〈SB.LED operations 14d 〉 ≡
private operation Output_Signal_For_LED(): Output_Signal;

{

-- This isn’t going to be very extendable, but there’s only one

-- LED in this simple demo.

return LED_Name’Pos (This.Name);

}

�

Fragment defined by 14bcd.
Fragment referenced in 13b.
Users: Output_Signal_For_LED never used.
Uses: LED 13b, LED_Name 4b, Name 6b, 14a, Output_Signal 4d.

14

2.6 Associations

This association relates each LED to the Button(s) it’s controlled by.

Each Button controls one or more LEDs.

Each LED is controlled by one or more Buttons.

This is a many-to-many relationship, so ColdFrame requires that it be implemented as
an Association Class, even though there are (as yet) no useful attributes for the Class
part to contain.

〈SB.Associations 15a 〉 ≡
association_class A1

Button Controls LED[1,*];

LED Is_Controlled_By Button[1,*];

end;

�

Fragment referenced in 3.
Users: A1 never used.
Uses: Button 6a, LED 13b.

3 TextUML tokens

These are the tokens used (and, importantly, reserved) by TextUML. Those bolded
correspond to stereotypes in ColdFrame.

abstract
association
association class
attribute
class
component
datatype
do
end
entry

enumeration
exception
false
final
id
in
initial
inout
interface
model

null
on
operation
out
package
primitive
private
protected
public
signal

specializes
state
statemachine
static
terminate
to
transition
true

In most cases, there won’t be a problem, but if you need to use one in an annotation
(e.g. [class], which at present is still needed in class signals and state machines –
static should be allowed) you can either precede it with a backslash ([\class]) or
capitalise it ([Class]).

Some of the ColdFrame stereotypes have hyphens, which isn’t supported in TextUML
because the name needs to be an identifier. Because of this, underscores in annotation
names are translated to hyphens.

An example would be

"test.tuml" 15b≡

model test;

[domain_interface (name=test)]

15

https://simonjwright.github.io/coldframe/ColdFrameProfile.html

package test_it;

[\protected] public datatype prot

operation set(value : integer);

[\entry] operation get(out value : integer);

private attribute value : integer := 42;

end;

end;

end.

�

4 Syntax

Note, this syntax doesn’t include the tokens; they are the UPPER CASE elements
below. In most cases, the actual token is the lower-case version of the element here
(exceptionally, NAMESPACE_SEPARATOR is ::).

start : \

model_comment annotations model_heading \

namespace_contents END DOT

model_heading : MODEL qualified_identifier SEMICOLON

qualified_identifier \

: identifier NAMESPACE_SEPARATOR qualified_identifier

| identifier

namespace_contents \

: top_level_element namespace_contents

| top_level_element

sub_namespace \

: package_heading \

namespace_contents END SEMICOLON

package_heading : PACKAGE qualified_identifier SEMICOLON

top_level_element \

: model_comment annotations top_level_element_choice

top_level_element_choice \

: association_class_def

| association_def

| class_def

| datatype_def

| enumeration_def

| exception_def

| primitive_def

16

| signal_def

| sub_namespace

single_type_identifier : qualified_identifier

type_identifier \

: single_type_identifier optional_multiplicity

| function_signature optional_multiplicity

optional_multiplicity \

: L_BRACKET multiplicity_spec R_BRACKET

| empty

multiplicity_spec \

: multiplicity_value COMMA multiplicity_value

| multiplicity_value

association_def \

: annotations ASSOCIATION identifier association_role_decl_list \

END SEMICOLON

association_class_def \

: annotations ASSOCIATION_CLASS identifier \

association_role_decl_list feature_decl_list \

END SEMICOLON

| annotations ASSOCIATION_CLASS identifier \

association_role_decl_list \

END SEMICOLON

association_multiplicity \

: L_BRACKET multiplicity_spec R_BRACKET

association_role_decl_list \

: association_role_decl association_role_decl

association_role_decl \

: model_comment annotations \

identifier identifier identifier association_multiplicity SEMICOLON

class_def : class_header feature_decl_list END SEMICOLON

class_header \

: class_modifiers class_type identifier class_specializes_section

class_modifiers \

: class_modifier_list

| empty

17

class_modifier_list \

: class_modifier class_modifier_list

| class_modifier

class_modifier \

: visibility_modifier

| ABSTRACT

class_specializes_section \

: SPECIALIZES class_specializes_list

| empty

class_specializes_list \

: identifier COMMA class_specializes_list

| identifier

class_type \

: CLASS

| INTERFACE

| COMPONENT

feature_decl_list \

: feature_decl feature_decl_list

| feature_decl

feature_decl \

: model_comment annotations feature_modifiers feature_type

feature_modifiers \

: feature_modifier_list

| empty

feature_modifier_list \

: feature_modifier feature_modifier_list

| feature_modifier

feature_modifier \

: visibility_modifier

| STATIC

| ABSTRACT

| ID

visibility_modifier \

: PUBLIC

| PRIVATE

| PACKAGE

18

| PROTECTED

feature_type \

: state_machine_decl

| operation_decl

| attribute_decl

state_machine_decl \

: STATEMACHINE identifier state_decls END SEMICOLON

| STATEMACHINE state_decls END SEMICOLON

state_decls \

: state_decl state_decls

| state_decl

state_decl \

: model_comment state_modifier STATE identifier state_behaviours \

transition_decls END SEMICOLON

| model_comment STATE identifier state_behaviours \

transition_decls END SEMICOLON

state_modifier \

: INITIAL

| TERMINATE

| FINAL

state_behaviours \

: state_behaviour_list

| empty

state_behaviour_list \

: state_behaviour state_behaviour_list

| state_behaviour

state_behaviour : ENTRY state_behaviour_definition SEMICOLON

state_behaviour_definition : simple_statement_block

transition_decls \

: transition_decl_list

| empty

transition_decl_list \

: transition_decl transition_decl_list

| transition_decl

transition_decl \

19

: model_comment annotations TRANSITION ON SIGNAL \

L_PAREN qualified_identifier R_PAREN \

TO identifier transition_effect_opt SEMICOLON

| model_comment annotations TRANSITION TO identifier \

transition_effect_opt SEMICOLON

transition_effect_opt \

: DO simple_statement_block

| empty

simple_statement_block \

: L_PAREN statement_list R_PAREN

| identifier

statement_list \

: identifier SEMICOLON statement_list

| identifier

operation_body : OPERATION_BODY

operation_decl \

: operation_header SEMICOLON operation_body

| operation_header SEMICOLON

operation_header : OPERATION identifier signature

attribute_decl \

: ATTRIBUTE identifier COLON type_identifier \

initialization_expression_opt SEMICOLON

initialization_expression_opt \

: initialization_expression

| empty

initialization_expression : ASSIGNOP simple_initialization

simple_initialization : literal_or_identifier

function_signature : L_CURLY_BRACKET simple_signature R_CURLY_BRACKET

signature : L_PAREN param_decl_list R_PAREN optional_return_type

simple_signature \

: L_PAREN simple_param_decl_list R_PAREN simple_optional_return_type

| L_PAREN simple_param_decl_list R_PAREN

optional_return_type \

20

: annotations simple_optional_return_type

| empty

simple_optional_return_type : COLON type_identifier

param_decl_list \

: param_decl COMMA param_decl_list

| param_decl

| empty

simple_param_decl_list \

: simple_param_decl COMMA simple_param_decl_list

| simple_param_decl

| empty

param_decl : annotations parameter_modifiers simple_param_decl

simple_param_decl \

: optional_parameter_name COLON type_identifier \

initialization_expression_opt

optional_parameter_name \

: identifier

| empty

parameter_modifiers \

: parameter_modifier parameter_modifiers

| empty

parameter_modifier \

: IN

| OUT

| INOUT

annotations \

: L_BRACKET annotation_list R_BRACKET

| empty

annotation_list \

: annotation COMMA annotation_list

| annotation

annotation \

: qualified_identifier annotation_value_specs

| qualified_identifier

annotation_value_specs \

21

: L_PAREN annotation_value_spec_list R_PAREN

annotation_value_spec_list \

: annotation_value_spec COMMA annotation_value_spec_list

| annotation_value_spec

annotation_value_spec : identifier EQUALS annotation_value

annotation_value \

: literal

| qualified_identifier

datatype_def \

: datatype_header feature_decl_list END SEMICOLON

| datatype_header SEMICOLON

datatype_header : class_modifiers DATATYPE identifier

enumeration_def \

: visibility_modifier ENUMERATION identifier \

enumeration_literal_decl_list END SEMICOLON

| ENUMERATION identifier \

enumeration_literal_decl_list END SEMICOLON

enumeration_literal_decl_list \

: enumeration_literal_decl enumeration_literal_decl_list_tail

enumeration_literal_decl : model_comment identifier

enumeration_literal_decl_list_tail \

: COMMA enumeration_literal_decl_list

| empty

exception_def \

: visibility_modifier EXCEPTION identifier SEMICOLON

| EXCEPTION identifier SEMICOLON

signal_def : signal_decl

signal_decl \

: SIGNAL qualified_identifier signal_attributes END SEMICOLON

| SIGNAL qualified_identifier SEMICOLON

signal_attributes \

: signal_attribute_decl signal_attributes

| signal_attribute_decl

22

signal_attribute_decl \

: ATTRIBUTE identifier COLON type_identifier SEMICOLON

primitive_def \

: visibility_modifier PRIMITIVE identifier SEMICOLON

| PRIMITIVE identifier SEMICOLON

model_comment \

: MODEL_COMMENT

| empty

identifier : IDENTIFIER

literal \

: boolean

| number

| STRING

| NULL

literal_or_identifier \

: literal

| identifier

boolean \

: TRUE

| FALSE

number \

: INTEGER

| REAL

multiplicity_value \

: INTEGER

| MULT

23

5 Files

"test.tuml" Defined by 15b.

"textuml.tuml" Defined by 2.

6 Macros

〈 SB.Associations 15a 〉 Referenced in 3.

〈 SB.Button attributes 6bc, 7ab 〉 Referenced in 6a.

〈 SB.Button operations 7cd, 8abc, 9abc 〉 Referenced in 6a.

〈 SB.Button state machine 10 〉 Referenced in 6a.

〈 SB.Button states 11ab, 12abc, 13a 〉 Referenced in 10.

〈 SB.Classes 6a, 13b 〉 Referenced in 3.

〈 SB.Enumerations 4ab 〉 Referenced in 3.

〈 SB.Imported types 4cd 〉 Referenced in 3.

〈 SB.LED attributes 14a 〉 Referenced in 13b.

〈 SB.LED operations 14bcd 〉 Referenced in 13b.

〈 SB.Signals 5abcd 〉 Referenced in 3.

〈The domains 3 〉 Referenced in 2.

7 Definitions

A1: defined in 15a, never used.
Button: defined in 6a, used in 5abcd, 10, 11b, 12ab, 13a, 15a.
Button::Lit_Timeout: defined in 5a, used in 12b.
Button::Push: defined in 5b, used in 5c, 11b, 12ab, 13a.
Button::Push_Timeout: defined in 5c, used in 12a.
Button::Release: defined in 5d, used in 11b, 12a, 13a.
Button_Name: defined in 4a, used in 6b.
Changed: defined in 7c, 14c, used in 11b, 12a.
Clear_Lit_Timeout: defined in 9a, used in 12c.
Clear_Pushed_Timeout: defined in 8b, used in 12b.
Held: defined in 13a, used in 9b, 12a.
Initial: defined in 11a, never used.
Input_Signal_State: defined in 4c, used in 9c.
Intialize: defined in 14b, never used.
Is_Set: defined in 9b, never used.
LED: defined in 13b, used in 14d, 15a.
LED_Name: defined in 4b, used in 14ad.
Lit_Timer: defined in 7a, used in 9a.
Name: defined in 6b, 14a, used in 14d.
Note_Pushed_Time: defined in 7d, used in 12a.
Off: defined in 11b, used in 11a, 12b, 13a.
Output_Signal: defined in 4d, used in 14d.
Output_Signal_For_LED: defined in 14d, never used.
Pushed: defined in 12a, used in 9b, 11b, 12c.
Pushed_Again: defined in 12c, used in 9b, 12b.
Pushed_Time: defined in 6c, used in 7d.

24

Pushed_Timer: defined in 7b, used in 8ab.
Receive_Change: defined in 9c, never used.
Set_Lit_Timeout: defined in 8c, used in 12b.
Set_Pushed_Timeout: defined in 8a, used in 12a.
Simple_Buttons: defined in 3, never used.
Timed: defined in 12b, used in 9b, 12a.

25

	Introduction
	Worked Example: Simple Buttons
	Enumerations
	Imported Types
	Signals
	Class Button
	Button attributes
	Button operations
	Button state machine

	Class LED
	LED attributes
	LED operations

	Associations

	TextUML tokens
	Syntax
	Files
	Macros
	Definitions

